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Abstract
The invariant separated variables are constructed for the Kowalevski–
Goryachev–Chaplygin gyrostat using decomposition of the corresponding
Lagrangian submanifold on a symmetric product of two copies of single spectral
curve of the 2 × 2 Lax matrix. A generalization to the bundle of the Poisson
brackets is discussed.

PACS numbers: 02.30.Ik, 02.40.−k

1. Introduction

In this letter, we consider the Kowalevski–Goryachev–Chaplygin gyrostat with the following
Hamilton function [1]:

H = J 2
1 + J 2

2 + 2J 2
3 + 2ρJ3 + c1x1 + c2x2 + c3(x

2
1 − x2

2 ) + c4x1x2 +
δ

x2
3

c1, c2, c3, c4, ρ, δ ∈ R.

(1.1)

The phase space consists of the variables xi and Ji . The position of a rigid body is fixed by the
components xi of the Poisson vector, which are cosines between the axes of the body frame and
the field up to a constant. The Ji are components of the angular momentum in the body-fixed
frame of reference.

Below we shall identify the phase space with union of the coadjoint orbits (symplectic
leaves) of the Euclidean motion group E(3) in e∗(3). In this case Ji, xi , i = 1, 2, 3, are
coordinates on the dual Lie algebra e∗(3) with the standard Lie–Poisson brackets

{Ji, Jj } = εijkJk, {Ji, xj } = εijkxk, {xi, xj } = 0, i, j, k = 1, 2, 3, (1.2)

where εijk is the standard totally skew-symmetric tensor. The generic symplectic leaves

Eab : {(x, J ) : C1 = a, C2 = b}
0305-4470/02/220309+10$30.00 © 2002 IOP Publishing Ltd Printed in the UK L309
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are four-dimensional symplectic manifolds specified by values of two Casimir elements

C1 =
3∑

i=1

x2
i = a, C2 =

3∑
i=1

xiJi = b. (1.3)

The symplectic Eab leaves are topologically equivalent to the cotangent bundle of the sphere
T ∗S2.

The Hamilton function (1.1) determines the dynamical system on Eab

d

dt
= {H, .} (1.4)

which is integrable by Liouville on the union of non-generic orbits Ea defined by the zero value
of the second Casimir function

C2 =
3∑

i=1

xiJi = 0. (1.5)

The corresponding additional integral is given by

K =
(

J 2
1 + J 2

2 − 2ρJ3 − ρ2 + c1x1 + c2x2 +
δ

x2
3

)2

+ 2c3((x1 − x2)ρ + x3(J1 − J2))((x1 + x2)ρ + x3(J1 + J2))

+ 2c4(ρx2 + x3J2)(ρx1 + x3J1) + 4(J3 + ρ)((ρx1 + x3J1)c1 + c2(ρx2 + x3J2))

− 2c1c2x1x2 − c2
1 − c2

2

2
(x2

1 − x2
2 ) − c2

1 + c2
2

2
x2

3

+ (2(c2x2 − c1x1)c3 − c4(c1x2 + c2x1))x
2
3 +

(
c2

3 +
c2

4

4

)
x4

3 . (1.6)

The level surface of integrals of motion

C(2) : ((x, J ) ∈ Ea : H = α1, K = α2) (1.7)

is a two-dimensional Lagrangian submanifold, which is a graph of the action function S [3].
In the separation of variables method we suppose that the complete integral S of the

corresponding Hamilton–Jacobi equation has an additive form

S = S1 + S2. (1.8)

This means that the Lagrangian submanifold C(2) (1.7) is realized as a product

C(2) = C1 × C2

of two plane curves Cj , which are graphs of dSj . These curves are defined by some equations

Cj : �j(λj , µj , α1, α2, a) = 0. (1.9)

Here µj and λj are coordinates on the plane related by the algebraic relation (1.9).
Then we are looking for a special canonical transformation of variables (x, J ) �→ (p, q)

such that each function Sj in (1.8) becomes a function on a single coordinate qj only. In this
case separated variables (p, q) satisfy one-dimensional separated equations

pj = ∂Sj (qj , α1, α2, a)

∂qj

. (1.10)

Since functions Sj are generating functions of the one-dimensional Lagrangian submanifolds
Cj , the pairs of separated variables lie on the curves Cj

�j (pj , qj , H(p, q), K(p, q), C1(p, q)) = 0. (1.11)
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These separated equations are obtained from (1.9) after substitution of the integrals of motion
as functions of the separated variables instead of their values αj and the separated variables
instead of plane coordinates µ = φ(Pi, Qi) and λ = ψ(Pi, Qi), which become functions on
the phase space.

Thus, in the separation of variables method we have to realize the Lagrangian submanifold
C(2) as a product of one-dimensional Lagrangian submanifolds Cj and have to determine the
corresponding canonical separated variables pi, qi .

In the special case c1 = c2 = c4 = ρ = δ = 0 the dynamical equations (1.4)
are the Kirchhoff equations. The corresponding separated variables have been invented by
Chaplygin [2]. In this case, the Lagrangian submanifold is a level surface of new functions
I1,2 on the initial integrals H and K

C̃(2) : {(x, J ) ∈ Ea : I1,2 = H ±
√

K = α1,2}.
It may be realized as a product of two plane curves C̃j defined by

C̃1,2 : �1,2(µ, λ) = µ2 − c3aλ + α1,2

2(λ2 − a)
= 0. (1.12)

The corresponding separated coordinates q1,2 are zeros of the polynomial

λ2 − 2λ

(
J 2

1 + J 2
2

c3x
2
3

)
+

(J 2
1 + J 2

2 )2 − K

c2
3x

4
3

= 0, (1.13)

whereas the conjugated momenta may be determined from equations (1.12) by λ = q1,2 and
µ = p1,2.

If c2 = c3 = c4 = δ = 0 the equations of motion (1.4) are the Euler–Poisson equations,
which were rewritten in the Lax form by Reyman and Semenov-Tian Shansky [4]. In this case
the Lagrangian submanifold C(2) (1.7) may be realized as a symmetric product of two copies
of the spectral curve Ĉ of the Lax matrix L(λ). The corresponding characteristic equation is
given by

Ĉ : �(µ, λ) = det(L(λ) − µ)) = µ4 − µ2(2c2
1λ

2 + 4(α1 + ρ2)λ − 4)

+ (c4
1λ

4 − 4c2
1(α1 + ρ2)λ3 − (4α2 − 2c2

1)λ
2 − 8ρ2λ) = 0. (1.14)

In the framework of the Sklyanin method [5] the corresponding separated variables q1,2

were constructed in [6]. They are poles of the Baker–Akhiezer function on Ĉ with standard
normalization. According to [6], we can select two zeros of the polynomial

(λ2 − q2
1 )(λ2 − q2

2 ) = λ4 + B1λ
2 + B0 = 0 (1.15)

as the separated variables q1,2. Here

B1 = c2
1x

2
−J 2

− − c1(2J−(J3 + ρ) − c1x3)(2x3J
2
− − x−(2J−J3 + c1x3))

4(J 2− − c1x−)J 2−
,

B0 = c2
1(2J−(J3 + ρ) − c1x3)

2

16(J 2− − c1x−)J 2−
, and x± = x1 ± ix2, J± = J1 ± iJ2.

Variables q1,2 together with canonically conjugated momenta p1,2 lie on a spectral curve (1.14).
However, these separated variables q1,2 (1.15) are complex rational functions on real

physical variables x and J . A similar situation arises for the Lagrange top as well. If the
Lagrangian submanifold is a product of two different curves, then the corresponding separated
variables are real functions on physical variables (see [7]). If the Lagrangian submanifold is a
symmetric product of two copies of single spectral curve of the Lax matrix, then the separated
variables are complex functions of physical variables. In the framework of the Sklyanin method
and bi-Hamiltonian geometry these separated variables were constructed in [8].
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The aim of this letter is to present the separated variables for the Kowalevski–Goryachev–
Chaplygin gyrostat (1.1) with six arbitrary parameters ci , ρ and δ. We realize Lagrangian
submanifold (1.7) as a symmetric product of two copies of the spectral curve of 2 × 2
Lax matrix proposed in [9] by ρ = 0 and generalized in [10] by ρ �= 0. As above, the
associated separated variables are complex functions on initial physical variables x and J . A
generalization of these results to the bundle of the Poisson brackets is obtained.

2. The Lax matrix

According to [9,10], let us start with the 2 × 2 Lax matrix for the symmetric Neumann system

T (λ) =
(

λ2 − 2J3λ − J 2
1 − J 2

2 − δ

x2
3

λ(ix1 + x2) − x3(iJ1 + J2)

λ(ix1 − x2) − x3(iJ1 − J2) x2
3

)
, (2.1)

which is a matrix polynomial on spectral parameter λ.

Proposition 1. [9, 10] Matrix T (λ) (2.1) defines representation of the Sklyanin algebra

{ 1
T (λ),

2
T (ν)} = [r(λ − ν),

1
T (λ)

2
T (ν)], (2.2)

on the symplectic leaves Ea (1.5).

Here we use the standard notations
1
T (λ) = T (λ) ⊗ Id,

2
T (ν) = Id ⊗ T (ν),

r(λ − ν) = i

λ − ν
�, and � =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (2.3)

Notion of this representation of the Sklyanin algebra T (λ) (2.1) allows us to construct the Lax
matrices for the Goryachev–Chaplygin top [10], its generalization [11] and the Lax matrices
for the Kowalevski–Goryachev–Chaplygin top [9] and gyrostat [10].

Recall that the main property of the Sklyanin algebra (2.2) is that for any numerical matrix
K coefficients of the trace of matrix KT (λ) give rise to the commutative subalgebra

{tr KT (λ), tr KT (ν)} = 0.

All the generators of this subalgebra are linear polynomials on coefficients of entries Tij (λ),
which are interpreted as integrals of motion for integrable system associated with the matrix
T (λ).

According to [12], we can construct another commutative subalgebra generated by
quadratic polynomials on coefficients of Tij (λ), which are integrals of motion for another
integrable system associated with the same matrix T (λ). Recall that, if K±(λ) are solutions
of the reflection equation

{ 1
K(λ),

2
K(ν)} = [r(λ − ν),

1
K(λ)

2
K(ν)] +

1
K(λ)r(λ + ν)

2
K(ν) − 2

K(ν)r(λ + ν)
1
K(λ), (2.4)

then coefficients of the trace of the Lax matrix

L(λ) = K−(λ) T (λ − ρ) K+(λ)

(
0 1

−1 0

)
T t(−λ − ρ)

(
0 1

−1 0

)
(2.5)

give rise to the commutative subalgebra

{tr L(λ), tr L(ν)} = 0.

In (2.5) the superscript t stands for matrix transposition; the matrix T (λ) satisfies (2.2) and
commutes with K(λ).
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In particular, using this general approach we can construct the Lax matrix for the
Kowalevski–Goryachev–Chaplygin gyrostat (1.1) [9, 10]. Namely, substituting the matrix
T (λ) (2.1) and two special numerical solutions of the reflection equations (2.4)

K+ =
(

a1λ + d1 λ

0 −a1λ + d1

)
, K− =

(
a2λ + d2 0

λ −a2λ + d2

)
(2.6)

depending on arbitrary parameters a1,2, d1,2 into the definition (2.5) one obtains the desired
Lax matrix. The spectral curve of this Lax matrix L(λ) (2.5) is defined by the characteristic
equation

C : �(µ, λ) = det(L(λ) − µ) = µ2 + µ(λ6 − 2H̃λ4 + K̃λ2 + 2d1d2(aρ
2 − δ))

+ (a2
1λ

2 − d2
1 )(a2

2λ
2 − d2

2 )(a(ρ − λ)2 − δ)(a(ρ + λ)2 − δ), (2.7)

where a = C1 (1.3) is a Casimir element. Integrals of motion

H̃ = J 2
1 + J 2

2 + 2J 2
3 + 2ρJ3 + ρ2 − a1a2a − i(d1 + d2 − (a1 + a2)(2J3 + ρ))x1

− (d1 − d2 − (a1 − a2)(2J3 + ρ))x2 + (i(a1 + a2)J1 + (a1 − a2)J2)x3 +
δ

x2
3

and K̃ in (2.7) coincide with the previous integrals H (1.1) and K (1.6) up to the Casimir
function and after canonical transformation of variables

J → J + Ux, U =
( 0 0 iβ+

0 0 β−
−iβ+ −β− 0

)
, β± = a1 ± a2

2

and exchange of parameters

a2
1 =

(
c3 +

ic4

2

)
, a2

2 =
(

c3 − ic4

2

)
, d1 = ic1 − c2

2
, d2 = ic1 + c2

2
.

Thus, we obtain the 2×2 Lax matrix for the Kowalevski–Goryachev–Chaplygin gyrostat (1.1)
and realize the Lagrangian submanifold C(2) (1.7) as a product of two copies of the spectral
curve C (2.7).

Note, in contrast with our previous papers [9,10], that here we use other matrices K± and,
therefore, another decomposition of the Lagrangian submanifold C(2) (1.7).

Using this 2 × 2 Lax matrix and the machinery of finite-band integration theory [13] we
could obtain explicit expressions for the solutions of the Kowalevski–Goryachev–Chaplygin
gyrostat. However, it is impossible now to find a precise quantum analogue of these classical
constructions. Therefore, below we shall consider the separation of variables method, which is
another universal method of solving completely integrable classical and quantum models [5].

3. The separated variables

The separated variables are poles of the properly normalized Baker–Akhiezer function on the
spectral curve C (2.7). Using the known 2 × 2 Lax matrix (2.5) these variables may be easy
found in the framework of the Sklyanin method [5].

However, one could construct the same decomposition of the Lagrangian submanifold
C(2) (1.7) and obtain the equation of the curve C (2.7) using another method. For instance, in
order to obtain the equation of the plane curve C one can apply the singular analysis of equations
of motion or bi-Hamiltonian geometry. So, it is interesting to construct the separated variables
directly from the definition of the plane curve C (2.7).

The Poisson manifold e∗(3) is a regular transversally constant manifold. There exist two
vector fields Za and Zb which are transversal to the symplectic leaves Eab and are symmetries
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of the Poisson tensor. So, locally M is a product of the symplectic leaf and of the Abelian
group G generated by the vector fields Za,b.

The integrable system on symplectic leaves Eab consists of an integrable Lagrangian
foliation (distribution). For instance, in our case fibres of this foliation are equal to C(2) = C×C,
where C is defined by (2.7). The vector fields Za,b are transversal to all the Lagrangian fibres
(Liouville tori) as the vector fields associated with the action variables. If connections of the
Lagrangian and symplectic foliations are compatible, then the integrable system (Lagrangian
foliation) is invariant with respect to action of the Abelian group G.

It is natural to suppose that the desired separated variables for an invariant integrable
system are invariant with respect to action of the Abelian group G as well. If this is true, then
the separated variables are solutions of the following system of equations [14]:

�(µ, λ, H, K, a)|Eab
= 0, Za,b�(µ, λ, H, K, a)|Eab

= 0. (3.1)

Here the function �(µ, λ, H, K, a) defines the algebraic curve C (2.7) and the vector fields
Za,b locally are equal to Za = ∂/∂a.

In our case b = 0 (1.5) and we have only one field Za associated with the canonical
transformation x → ax, which describes the symmetry of the Poisson tensor. This canonical
transformation generates a change of parameters in the Hamilton function H (1.1)

c1,2 → ac1,2, c3,4 → a2c3,4.

This allows us to enlarge the system of equations (3.1) using a few vector fields Zcj
= ∂/∂cj

instead of a single field Za , as for the Neumann system and as for the Goryachev–Chaplygin
top [14].

Proposition 2. The separated variables associated with the curve C (2.7) are solutions of one
of the following systems of equations for j = 1, 2:

�(µ, λ, H, K, a) = 0,
∂

∂aj

�(µ, λ, H, K, a) = 0,

∂

∂dj

�(µ, λ, H, K, a) = 0
(3.2)

or

�(µ, λ, H, K, a) = 0, �(µ, λ, H, K, a)|aj =0 = 0,

�(µ, λ, H, K, a)|dj =0 = 0.
(3.3)

Proof. This proposition may be proved by straightforward calculations. For brevity, to prove
this proposition we shall use the known Lax representation L(λ) (2.5). �

Let us begin with the case j = 2. Using matrix entries of the subsidiary matrix

T (λ) = T (λ − ρ) K+(λ)

(
0 1

−1 0

)
T t(−λ − ρ)

(
0 1

−1 0

)
, (3.4)

which satisfy the reflection equation (2.4), one obtains

�(µ, λ) = µ2 + ((−a2λ − d2)T11 + (a2λ − d2)T22 − λT12)µ − (a2
2λ

2 − d2
2 )Det(T ).

Substituting this function �(µ, λ) into (3.2) or (3.3) and eliminating µ, we obtain an equation
for the definition of the separated coordinates q1,2 as zeros of the following polynomial:

T12(λ) = λ(λ2 − q2
1 )(λ2 − q2

2 ) = 0. (3.5)

The remaining equation defines µk as a function of coordinates qk and momenta pk

µk(pk, qk) = (a2qk + d2)T11(qk). (3.6)
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The variables pk and qj are required to be canonical

{q1, q2} = {p1, p2} = 0, {pk, qj } = δkj .

Putting together this condition and equations

{q1, q2} = {µ1, µ2} = 0, {qj , µk} = −iµkδjk,

which follows from the definitions (3.5) and (3.6), one obtains

pk = −i ln T11(qk) = −i(ln µk − ln(a2qk + d2)). (3.7)

To end the proof it is sufficient now to notice that by definition (3.2) canonical variables p1,2

and q1,2 lie on the curve C and, therefore, they are separated variables.
Substituting λ = qj and µk into equation (2.7) one obtains the corresponding separated

equations (1.11). So, the system of equations of motion reduces to quadratures on the Jacobian
of a hyperelliptic curve (2.7) of genus g = 5. For ρ = 0, i.e. without a gyrostatic term, the
genus of the curve is reduced to g = 2.

If j = 1 we can exchange factors in (2.5) and introduce another Lax matrix associated
with the same spectral curve C (2.7)

L̃(λ) = T̃ K+,

where

T̃ =
(

0 1
−1 0

)
T t(−λ − ρ)

(
0 1

−1 0

)
K−(λ)T (λ − ρ).

By the same methods it can be shown that the separated coordinates q̃1,2 are zeros of the
following polynomial:

T̃21(λ) = λ(λ2 − q̃2
1 )(λ2 − q̃2

2 ) = 0 (3.8)

and the conjugated momenta read as

p̃k = −i ln T̃11(q̃k).

As above these canonical variables p̃1,2 and q̃1,2 lie on the curve C and, therefore, they are
separated variables.

Remark. The pairs of variables q1,2 and q̃2
1 are related by canonical transformation of the

physical variables x2 → −x2, J2 → −J2 and by flip of parameters a1 ↔ a2, d1 ↔ d2. The
existence of two pairs of separated variables is associated with the invariance of the Sklyanin
brackets (2.2) with respect to a matrix transposition T → T t .

Equation (3.5) has the following form:

λ4 + 2(H − iv − ρ2)λ2 + 2iu + 2d1d2a − K = 0 (3.9)

where

v = a2x3J+ − (a2(2J3 + ρ) − d2 − ia2
2x+)x+

u = (J 2
+ + 2id1x+ + a2

1x
2
3 )(a2x3J− − d2x− + ia2

2x
2
3 )

+

(
ρ(2ia2

2x+ − a2(2J3 + ρ) + 2d2) +
a2δ

x2
3

)
(x3J+ + ρx+)

− iρ2(a2
2x+ − id2)x+ + (a2x

2
3 (−2id1 + a2

1x−) + a2x+J+J−)ρ +
d2δx+

x2
3

,

and

x± = x1 ± ix2, J± = J1 ± iJ2.

The separated coordinates q1,2 are zeros of the polynomial (3.9).
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In order to compare our results with known ones (1.13) and (1.15) we present a definition
of the separated coordinates (3.9) for these special cases explicitly. For c1 = c2 = c4 = ρ =
δ = 0 polynomial (3.9) reads as

λ4 + 2(H + a2
2x

2
+ − ia2(x3J+ − 2x+J3))λ

2 + 2ia2x3(J
2
+ + a2

2x
2
3 )(J− + ia2x3) − K = 0,

and for c2 = c3 = c4 = δ = 0 it has the form

λ4 + 2(H − id2x+ − ρ2)λ2 + 2id2(ρ
2x+ + J+(2ρx3 − x−J+)) + 2d2

2 a − K = 0.

The main difference from the previous constructions [2] and [6] is that coefficients of the
equation (3.9) are polynomials on initial physical variables. This allows us to construct the
quantum counterpart of equation (3.9) using the quantum matrix T (λ) proposed in [9].

The separated variables (1.13) and new variables (3.9) proposed in [2] are associated with
the different Lagrangian submanifolds defined by H ± √

K = α1,2 and H = α1, K = α2,
respectively. Henceforth, there are two different separations of variables associated with two
level surfaces of integrals with different topology.

On the other hand, the separated variables (1.13) [2] and new variables (3.9) proposed
in [6] are associated with the different decomposition of the common Lagrangian submanifold
defined by H = α1, K = α2. Since the motion linearizes on the Jacobians of the curves (1.14)
and (2.7) which are isogeneous to one another [15], we can map one set of the separated
equations (1.14) into another one (2.7) using an algebro-geometric approach [15]. It remains
an interesting problem to study the induced interrelations between the corresponding separated
variables.

4. Generalization

Let Ji, yi , i = 1, 2, 3, be coordinates on the six-dimensional twisted Kac–Moody algebra g

with the following Lie–Poisson brackets:

{Ji, Jj } = εijkJk, {Ji, yj } = εijkyk, {yi, yj } = 2εijkJk, (4.1)

where 2 is an arbitrary parameter. The generic symplectic leaves

Oab : {(x, J ) : C̃1 = a, C̃2 = b}
are specified by the fixed values of two Casimir elements

C̃1 =
3∑

i=1

x2
i + 2

3∑
i=1

J 2
i , C̃2 =

3∑
i=1

yiJi . (4.2)

By  = 0 one obtains the Euclidean g0 	 e(3) algebra; by  = 1,
√−1 one obtains another

semisimple algebras g1 	 o(4) and g√−1 	 o(3, 1), respectively.

Proposition 3. If C2 = C̃2 = 0 the equation
y

|y| = x

|x| (4.3)

describes the isomorphism of the non-generic orbits Oa and Ea .

Proof. Straightforward calculations show that the scaling transformation

xi = ayi√
y2

1 + y2
2 + y2

3
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and the inverse transformation

yi = xi

√
a − 2(J 2

1 + J 2
2 + J 2

3 )

x2
1 + x2

2 + x2
3

relate brackets (4.1) to brackets (1.2) by C2 = C̃2 = 0. �
Using these maps we can construct new integrable systems on the bundle of the Poisson

brackets (4.1). For instance, starting with the Hamilton function H (1.1) one obtains the new
Hamiltonian

H = J 2
1 + J 2

2 + 2J 2
3 + 2ρJ3 +

c1y1 + c2y2

|y| +
c3(y

2
1 − y2

2 ) + c4y1y2

|y|2 +
δ(y2

1 + y2
2 )

y2
3

.

The separated variables for this system may be obtained from the proposed separated
variables (3.9) on Ea using mapping (4.3).

5. Summary

A separation of variables for the generic Kowalevski–Goryachev–Chaplygin gyrostat is
found. The separated variables are invariant with respect to the Abelian group of symplectic
diffeomorphisms of the corresponding Lagrangian foliation and, therefore, belong to the
invariant intersection of all the subfoliations. This invariance property allows us to calculate
the separated variables explicitly.

Namely, the invariant separated variables lie on a symmetric product of two copies of
single hyperelliptic curve and the separated coordinates are roots of the second-order equation
with polynomial coefficients, so this separation stands a good chance of being quantized.

However, the proposed separated variables are complex functions of physical variables.
It remains an open problem how to construct real solutions of the Kowalevski–Goryachev–
Chaplygin gyrostat using complex hyperelliptic quadratures.
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